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1 C∗-Algebras and Normal Functional Calculus

1.1 C∗-algebras

Definition 1.1. On an algebra A over C, an involution is a map A → A : a 7→ a∗ such
that

1. (a∗)∗ = a,

2. (ab)∗ = b∗a∗,

3. (λa+ b))∗ = λa∗ + b∗ for all λ ∈ C, a, b ∈ A .

This this A is a *-algebra.

Definition 1.2. A Banach algebra with an involution is a C∗-algebra if

‖a‖2 = ‖a∗a‖ ∀a ∈ A .

Example 1.1. Operators on a Hilbert space form a C∗-algebra:

‖Tx||2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ≤ ‖T ∗T‖‖x‖2.

Example 1.2. B0(H) is a C∗-algebra (without identity, unless dimH <∞).

Example 1.3. If X is compact and Hausdorff, then CC(X) is a C∗-algebra with f∗ := f .

Henceforth, we will only deal with unital C∗-algebras.

Proposition 1.1. Let A be a C∗-algebra. Then for all a ∈ A , ‖a∗‖ = ‖a‖. If A is unital,
then 1∗ = 1 and ‖1‖ = 1.

Proof. We have ‖a‖2 = ‖a∗‖‖a‖ ≤ ‖a∗‖‖a‖, which gives ‖a‖ ≤ ‖a∗‖. Switching a and a∗,
we get the other inequality.

Suppose a ∈ A . Then 1∗a = (a∗1)∗ = (a∗)∗ = a (and same for right multiplication), so
1∗ = 1. This gives ‖1‖2 = ‖1∗1‖ = ‖1‖, so ‖1‖ = 0 or 1. But this is a norm, so ‖1‖ = 1.
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1.2 Self-adjoint, normal, and unitary elements

Definition 1.3. a ∈ A is

• self-adjoint if a = a∗,

• normal if aa∗ = a∗a

• unitary if a∗ = a−1.

Proposition 1.2. Let a ∈ A .

1. If a is invertible, then a∗ is invertible, and (a∗)−1 = (a−1)∗.

2. a = x+ iy, where x, y are self-adjoint.

3. If u is unitary, ‖u‖ = 1.

4. If a is normal, its spectral radius is r(a) = ‖a‖.

Proof. 1. We have a∗(a−1)∗ = (a−1a)∗ = 1∗ = 1.

2. Let x = a+a∗

2 and y = a−a∗
2i .

3. ‖u‖2 = ‖u∗u‖ = 1.

4. We know that r(a) = limn ‖an‖1/n. In particular, we can take a subsequence with
powers of 2. We have

‖a2k‖2−k
= ‖a2k−1

a2
k−1‖2−k

= ‖a2k−1‖2−(k−1)
= · · · = ‖a‖.

So limk ‖a2
k‖2−k

= ‖a‖.

Proposition 1.3. Let h : A → C be a nonzero homomorphism. Then

1. If a = a∗, then h(a) ∈ R. In particular, if A is abelian, σ(a) ⊆ R.

2. h(a∗) = h(a).

3. h(a∗a) ≥ 0.

4. If u is unitary, then |h(u)| = 1.

Proof. 1. We know ‖h‖A∗ ≤ 1. Let t ∈ R, and consider h(a+ it). We have

|h(a) + it|2 = |h(a+ it)|2

≤ ‖a+ it‖2

= (a+ it)∗(a+ it)
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= ‖(a− it)(a+ it)

= ‖a2 + t2‖
≤ ‖a2‖+ t2.

If h(a) = x + iy, then we get x2 + (y + t)2 ≤ ‖a‖2 + t2 for all t. This gives us
x2 + y2 + 2yt ≤ ‖a‖2 for all t. So we get y = 0.

2. If a = a+ iy, where x, y are self-adjoint, then a∗ = x− iy. Now apply h.

3. h(a∗a) = h(a∗)h ∗ (a) = |h(a)|2.

4. We have 1 = uu∗. Now apply h.

1.3 The Gelfand Transform and functional calculus for normal elements

The extra structure here makes it clear why the spectral theorem is true.

Theorem 1.1. If A is an abelian C∗-algebra, then the Gelfand transform A → C(Σ) is
an isometric *-isomorphism,

Proof. It preserves the involution because

â∗(h) = h(a∗) = h(a) = â(h).

If a ∈ A , then a is normal, so ‖â‖sup = r(a) = ‖a‖; so the transform is isometric.
To check that this is surjective, by the Stone-Weierstrass theorem, we need only check

that Â separates points. If h1 6= h2, then let a ∈ A be such that h1(a) 6= h2(a). Then
â(h1) 6= â(h2).

This gives us a full functional calculus: if A is any abelian C∗-subalgebra of B(H),
then there exists an isometric *-algebra isomorphism C(Σ) → A , namely the inverse of
the Gelfand transform. If N ∈ B(H) is normal, then C∗(N) := {p(N,N∗) : p ∈ C[z, z]} is
an abelian C∗-algebra which contains N . So normal operators are precisely the ones that
have a functional calculus like this.

Proposition 1.4. In this example, ΣC∗(N) is homeomorphic to σ(N) ⊆ C under the

homeomorphism N̂ : ΣC∗(N) → C.

Proof. We know that N̂(Σ) = {h(N) : h ∈ Σ} = σ(N). We need to check that if N̂(h1) =
N̂(h2), then h1 = h2. We have h1(N) = h2(N), so

h1(N
∗) = h1(N) = h2(N)h2(N

∗).

So h1, h2 agree on any polynomial in N,N∗, which means h1 = h2.
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Let Φ : C(σ(N)) → C∗(N) be our functional calculus. For any f ∈ C(σ(N)) and
x, y ∈ H, consider

〈Φ(f)x, y〉 =

∫
σ(N)

f dµx,y

for some complex-valued Borel measure µx,y. The right hand side is defined for all bounded
Borel functions f on σ(N). Use this to define Φ(f) for some functions. This extends Φ to a
functional calculus from all bounded, Borel functions on σ(N) to B(H). To get a spectral
measure of N , use Φ(1A) for all Borel A ⊆ σ(N).

Remark 1.1. We can look at abelian algebras generated by multiple commuting operators.
There is a form of the spectral theorem in that setting, too.
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