Math 255A' Lecture 28 Notes #### Daniel Raban December 6, 2019 # 1 C^* -Algebras and Normal Functional Calculus #### 1.1 C^* -algebras **Definition 1.1.** On an algebra \mathscr{A} over \mathbb{C} , an **involution** is a map $\mathscr{A} \to \mathscr{A} : a \mapsto a^*$ such that - 1. $(a^*)^* = a$, - $(ab)^* = b^*a^*,$ - 3. $(\lambda a + b)^* = \overline{\lambda} a^* + b^*$ for all $\lambda \in \mathbb{C}$, $a, b \in \mathcal{A}$. This this \mathscr{A} is a *-algebra. **Definition 1.2.** A Banach algebra with an involution is a C^* -algebra if $$||a||^2 = ||a^*a|| \qquad \forall a \in \mathscr{A}.$$ **Example 1.1.** Operators on a Hilbert space form a C^* -algebra: $$||Tx||^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle \le ||T^*T|| ||x||^2.$$ **Example 1.2.** $\mathcal{B}_0(H)$ is a C^* -algebra (without identity, unless dim $H < \infty$). **Example 1.3.** If X is compact and Hausdorff, then $C_{\mathbb{C}}(X)$ is a C^* -algebra with $f^* := \overline{f}$. Henceforth, we will only deal with unital C^* -algebras. **Proposition 1.1.** Let \mathscr{A} be a C^* -algebra. Then for all $a \in \mathscr{A}$, $||a^*|| = ||a||$. If \mathscr{A} is unital, then $1^* = 1$ and ||1|| = 1. *Proof.* We have $||a||^2 = ||a^*|| ||a|| \le ||a^*|| ||a||$, which gives $||a|| \le ||a^*||$. Switching a and a^* , we get the other inequality. Suppose $a \in \mathcal{A}$. Then $1^*a = (a^*1)^* = (a^*)^* = a$ (and same for right multiplication), so $1^* = 1$. This gives $||1||^2 = ||1^*1|| = ||1||$, so ||1|| = 0 or 1. But this is a norm, so ||1|| = 1. ### 1.2 Self-adjoint, normal, and unitary elements **Definition 1.3.** $a \in \mathscr{A}$ is - self-adjoint if $a = a^*$, - normal if $aa^* = a^*a$ - unitary if $a^* = a^{-1}$. Proposition 1.2. Let $a \in \mathcal{A}$. - 1. If a is invertible, then a^* is invertible, and $(a^*)^{-1} = (a^{-1})^*$. - 2. a = x + iy, where x, y are self-adjoint. - 3. If u is unitary, ||u|| = 1. - 4. If a is normal, its spectral radius is r(a) = ||a||. *Proof.* 1. We have $a^*(a^{-1})^* = (a^{-1}a)^* = 1^* = 1$. - 2. Let $x = \frac{a+a^*}{2}$ and $y = \frac{a-a^*}{2i}$. - 3. $||u||^2 = ||u^*u|| = 1$. - 4. We know that $r(a) = \lim_n ||a^n||^{1/n}$. In particular, we can take a subsequence with powers of 2. We have $$||a^{2^k}||^{2^{-k}} = ||a^{2^{k-1}}a^{2^{k-1}}||^{2^{-k}} = ||a^{2^{k-1}}||^{2^{-(k-1)}} = \dots = ||a||.$$ So $\lim_{k} ||a^{2^k}||^{2^{-k}} = ||a||$. **Proposition 1.3.** Let $h: \mathcal{A} \to \mathbb{C}$ be a nonzero homomorphism. Then - 1. If $a = a^*$, then $h(a) \in \mathbb{R}$. In particular, if \mathscr{A} is abelian, $\sigma(a) \subseteq \mathbb{R}$. - 2. $h(a^*) = \overline{h(a)}$. - 3. $h(a^*a) \ge 0$. - 4. If u is unitary, then |h(u)| = 1. *Proof.* 1. We know $||h||_{A^*} \leq 1$. Let $t \in \mathbb{R}$, and consider h(a+it). We have $$|h(a) + it|^2 = |h(a + it)|^2$$ $\leq ||a + it||^2$ $= (a + it)^*(a + it)$ $$= \|(a - it)(a + it)$$ = \|a^2 + t^2\| \leq \|a^2\| + t^2. If h(a) = x + iy, then we get $x^2 + (y + t)^2 \le ||a||^2 + t^2$ for all t. This gives us $x^2 + y^2 + 2yt \le ||a||^2$ for all t. So we get y = 0. - 2. If a = a + iy, where x, y are self-adjoint, then $a^* = x iy$. Now apply h. - 3. $h(a^*a) = h(a^*)h * (a) = |h(a)|^2$. - 4. We have $1 = uu^*$. Now apply h. #### 1.3 The Gelfand Transform and functional calculus for normal elements The extra structure here makes it clear why the spectral theorem is true. **Theorem 1.1.** If \mathscr{A} is an abelian C^* -algebra, then the Gelfand transform $\mathscr{A} \to C(\Sigma)$ is an isometric *-isomorphism, *Proof.* It preserves the involution because $$\widehat{a^*}(h) = h(a^*) = \overline{h(a)} = \overline{\widehat{a}}(h).$$ If $a \in \mathcal{A}$, then a is normal, so $\|\widehat{a}\|_{\sup} = r(a) = \|a\|$; so the transform is isometric. To check that this is surjective, by the Stone-Weierstrass theorem, we need only check that $\widehat{\mathscr{A}}$ separates points. If $h_1 \neq h_2$, then let $a \in \mathscr{A}$ be such that $h_1(a) \neq h_2(a)$. Then $\widehat{a}(h_1) \neq \widehat{a}(h_2)$. This gives us a full functional calculus: if \mathscr{A} is any abelian C^* -subalgebra of $\mathcal{B}(H)$, then there exists an isometric *-algebra isomorphism $C(\Sigma) \to \mathscr{A}$, namely the inverse of the Gelfand transform. If $N \in \mathcal{B}(H)$ is normal, then $C^*(N) := \overline{\{p(N, N^*) : p \in C[z, \overline{z}]\}}$ is an abelian C^* -algebra which contains N. So normal operators are precisely the ones that have a functional calculus like this. **Proposition 1.4.** In this example, $\Sigma_{C^*(N)}$ is homeomorphic to $\sigma(N) \subseteq \mathbb{C}$ under the homeomorphism $\widehat{N} : \Sigma_{C^*(N)} \to \mathbb{C}$. *Proof.* We know that $\widehat{N}(\Sigma) = \{h(N) : h \in \Sigma\} = \sigma(N)$. We need to check that if $\widehat{N}(h_1) = \widehat{N}(h_2)$, then $h_1 = h_2$. We have $h_1(N) = h_2(N)$, so $$h_1(N^*) = \overline{h_1(N)} = \overline{h_2(N)}h_2(N^*).$$ So h_1, h_2 agree on any polynomial in N, N^* , which means $h_1 = h_2$. Let $\Phi: C(\sigma(N)) \to C^*(N)$ be our functional calculus. For any $f \in C(\sigma(N))$ and $x,y \in H$, consider $\langle \Phi(f)x, y \rangle = \int_{\sigma(N)} f \, d\mu_{x,y}$ for some complex-valued Borel measure $\mu_{x,y}$. The right hand side is defined for all bounded Borel functions f on $\sigma(N)$. Use this to define $\Phi(f)$ for some functions. This extends Φ to a functional calculus from all bounded, Borel functions on $\sigma(N)$ to $\mathcal{B}(H)$. To get a spectral measure of N, use $\Phi(\mathbb{1}_A)$ for all Borel $A \subseteq \sigma(N)$. **Remark 1.1.** We can look at abelian algebras generated by multiple commuting operators. There is a form of the spectral theorem in that setting, too.